PROBLEM 1. Is it possible to solve the equation

\[z^3 + 3xyz^2 - 5x^2y^2z + 14 = 0 \]

for \(z \) near 2 as a function of \(x \) and \(y \) near \(x = 1, y = -1 \)? Explain your reasoning.

PROBLEM 2. Let \(G : \mathbb{R}^2 \to \mathbb{R} \) be a \(C^1 \)-function. State under what conditions does the equation \(G(x, y) = 0 \) define \(y \) near some \(b \in \mathbb{R} \) as a differentiable function in \(x \) near some \(x = a \in \mathbb{R} \). How can the derivative \(\frac{dy}{dx} \) be expressed near \(a \)?

PROBLEM 3. Simplify the differential form

\[\varphi = (x^2 \, dx \wedge dy - \cos x \, dy \wedge dz) \wedge (y^2 \, dy + \cos x \, dw) - (x^3 \, dy \wedge dz - \sin x \, dy \wedge dw) \wedge (y^3 \, dy + \sin x \, dz). \]
PROBLEM 4. Apply Leibniz’s formula to evaluate the exterior derivative of the differential form
\[\omega = (e^{xy} \, dz + e^{yz} \, dx) \wedge (\sin x \, dy + \cos y \, dx). \]

PROBLEM 5. Prove that if \(\varphi \) is an \(r \)-form with \(r \)-odd, then \(\varphi^2 = 0 \).

PROBLEM 6. Find the exterior derivative of the differential form \(\varphi = 3xy \, dx + 2x \, dy \). Is \(\varphi \) a closed form or not? Use the result to show that one cannot find a function \(f \) such that \(\varphi = df \).

PROBLEM 7. Consider the surface \(S \) of equation \(z = 3x^2 + 5y^2 \).

(U) Write the equation of the tangent plane to \(S \) at the point \(p = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \).

(G) Write the equations of the tangent planes \(P_1, P_2, P_3 \) to \(S \) at the points \(p_1 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, p_2 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, p_3 = \begin{pmatrix} 0 \\ 2 \\ 20 \end{pmatrix} \). Find the point \(q = P_1 \cap P_2 \cap P_3 \).
PROBLEM 8. Let $U = \left\{ \begin{pmatrix} u \\ v \\ w \end{pmatrix} : 0 \leq u, v, w \leq 1 \right\}$, $\gamma : \mathbb{R}^3 \to \mathbb{R}^4$ is the function

$$\gamma \left(\begin{pmatrix} u \\ v \\ w \end{pmatrix} \right) = \begin{pmatrix} uv \\ u^2 - w^2 \\ v - u \\ w \end{pmatrix},$$

and M is the manifold $\gamma(U) \subset \mathbb{R}^4$. Express the integral

$$\int_{[\gamma(U)]} x_2 \, dx_1 \wedge dx_3 \wedge dx_4$$

as an ordinary integral in \mathbb{R}^3. (U) Do not evaluate it. (G) Evaluate it.

PROBLEM 9. Why does the form dx not define an orientation of the unit circle $x^2 + y^2 = 1$?

PROBLEM 10. Write down, in your own words, all ways you know in which a k-dimensional manifold $M \subset \mathbb{R}$ can be described locally near one of its points, say, $c \in M$.

3