Note: You can use a calculator for these problems. Some may be a bit more involved than problems you would see on an in-class test, but they are good practice none-the-less.

1. Evaluate the limit: \(\lim_{x \to \infty} \frac{x^2 + 2x + 1}{3x^2 + x + 2} \) if it exists. \(\frac{1}{3} \)

2. Find the value of the limit: \(\lim_{x \to -\infty} (\sqrt{x^2 + x} - x) \). \(\frac{1}{2} \)

3. Estimate the area under the graph of \(f(x) = 16 - x^2 \) from \(x = 0 \) to \(x = 4 \) using 4 rectangles and right end points. \(3 \frac{4}{5} \)

4. If \(\int_0^3 f(x)dx = 12 \) and \(\int_0^6 f(x)dx = 42 \), find the value of \(\int_0^5 (2f(x) - 3)dx \). \(5 \frac{1}{6} \)

5. Evaluate \(\int_{-1}^1 x^{1/3}dx \). \(\frac{45}{4} \)

7. Consider the function \(f(x) = x^2 \) on the interval \([0, 1/2]\). According to the Mean Value Theorem there must be a number \(c \) in \((0, 1/2)\) such that \(f'(c) \) is equal to a particular value \(d \). What is \(d \)? \(\frac{1}{2} \)

8. On what interval is the graph of \(f(x) = x^3 - x \) concave downward? \(x < 0 \)

9. Find the difference between the local maximum and the local minimum values of the function \(x^3 - 3x + 27 \). \(4 \)

10. Find all critical points for \(x^3 - 9x + 1 \) on \((-\infty, \infty)\). Is the function a max or min at these points? \(x = \pm \sqrt{3} \) min \(x = \sqrt{3} \) max

11. On what interval is \(f(x) = \frac{x^2}{x^2 + 1} \) increasing? \((-1, 1)\)

12. Find the y coordinate of the point of inflection of the function \(x^3 - x^2 \). \(-2/7 \)

13. Use Newton’s method to approximate a solution to \(x^3 + 2x = 3.1 \) to two decimal places. \(\text{2 roots: } x = 1.02, x = -3.02 \)

14. A drinking cup is made in the shape of a right circular cylinder. For a fixed volume, we wish to make the total material used as small as possible. Under this condition, what is the ratio of the height to the diameter? \(\frac{1}{2} \)

15. The velocity of a particle moving along a line is \(t^3 - t \) meters per second. Find the distance traveled in meters during the time interval \(0 \leq t \leq 2 \). \(5 \frac{1}{2} \)

16. Find the most general antiderivative to \(\sec^2 \theta + \cos \theta \). \(\tan \theta + \sin \theta + C \)

17. Evaluate \(\int \cos(\pi x)dx \). \(-\frac{1}{\pi} \sin \pi \frac{x}{2} \)

18. Evaluate \(\int_{-2}^1 |2x + 1|dx \). \(4 \frac{1}{2} \)