Section 2.3 - Axioms of Probability

STAT 341: Intro Prob and Stat

The University of Montana
1. An Opening Question
2. Axioms of (Classical) Probability
3. Propositions
4. Constructing Probability Functions
An Opening Question

Suppose that we were interested in determining the probability of rolling a product that is even when two fair six-sided dice are rolled. How could we determine the probability of this event from:

1. A frequentist approach?
2. A classicalist approach?
The classical approach to probability assumes that for each event, \(E \), in a sample space \(S \), there is a value \(P(E) \), referred to as the probability of the event \(E \). This probability function \(P \) must satisfy three axioms.
Axiom 1

\[0 \leq P(E) \leq 1 \]

for any event \(E \)
Axioms of (Classical) Probability

Axiom 2

\[P(S) = 1 \]
Axiom 3

For any infinite sequence of pairwise mutually exclusive events E_1, E_2, \ldots (that is, events for which $E_i E_j = \emptyset$ when $i \neq j$) we have the following:

$$P \left(\bigcup_{i=1}^{\infty} E_i \right) = \sum_{i=1}^{\infty} P(E_i)$$
Propsition 3.1

\[P(\emptyset) = 0 \]
Proposition 3.2

For any finite sequence of \(n \) pairwise mutually exclusive events \(E_1, E_2, \ldots, E_n \) we have the following:

\[
P \left(\bigcup_{i=1}^{n} E_i \right) = \sum_{i=1}^{n} P(E_i)
\]
Suppose that a die is rolled 4 times. Let i denote the number of times that the number six appears. Construct a probability function for $i = 0, 1, 2, 3, 4$.
Suppose that a study of HIV/TB coinfection in a certain population has determined the following probabilities:

\[P(TB) = 0.8 \]
\[P(HIV) = 0.6 \]
\[P(TB \text{ and } HIV) = 0.3 \]

is the study legitimate?