1 Motivation
2 Global Maximum/Minimum
3 Extreme Value Theorem
4 Finding Global Extrema on a Closed Interval
5 Finding Global Extrema on an Open Interval
6 Examples
Motivation

Finding the largest and smallest values of a quantity is of practical importance in many contexts. Consider:

1. Medicine: the maximum dosage of a drug
2. Engineering: the minimum size of an I-beam to support a load
3. Wildlife Biology: the minimum cow/calf ratio that self sustains a herd of elk
4. Urban Planning: the traffic light configuration that maximizes traffic flow

These sorts of problems all belong to the field of mathematics that is called **optimization**
Global Maximum/Minimum

We say that f has a **global maximum** at p if $f(p)$ is greater than or equal to all values of f.

We say that f has a **global minimum** at p if $f(p)$ is less than or equal to all values of f.
If f is continuous on the closed interval $a \leq x \leq b$ then f has a global maximum and a global minimum on that interval.
Finding Global Extrema on a Closed Interval

If f is continuous on the closed interval $a \leq x \leq b$ then, to find the global maximum or minimum,

1. Find the critical points of f in the interval
2. Evaluate the function at the critical points and at the endpoints, a and b

The global maximum and minimum are the maximum and minimum values of the function among those considered. A global maximum and minimum will always exist.
Finding Global Extrema on an Open Interval

If \(f \) is continuous on the open interval \(a < x < b \) (or \(-\infty < x < \infty \)) then, to find the global maximum or minimum,

1. Find the critical points of \(f \) in the interval
2. Evaluate the function at the critical points
3. Determine the behavior of \(f \) as \(x \) approaches the endpoints of the open interval \(a \) and \(b \) (or \(-\infty \) and \(\infty \))

The global maximum and minimum are the maximum and minimum values of the function among those considered...if they exist. A global maximum and minimum will not always exist.
For the function below, estimate the coordinates of all local and global maxima and minima on the interval \([0, 10]\).
Examples

Find the global maximum and minimum value of

\[f(x) = x + \frac{3}{x} \]

on the interval \([1, 4]\)
Examples

For a positive constant b, the surge function $f(t) = te^{-bt}$ gives the quantity of drug in the body at a time $t \geq 0$.

1. Find the global maximum and minimum value of f for $t \geq 0$.
2. Find the value of b that makes $t = 10$ the global maximum.
Examples

Sketch a continuous, differentiable graph with the following properties:

- local minima at \(x = 2 \) and \(x = 4 \)
- global minimum at \(x = 2 \)
- local and global maximum at \(x = 3 \)
- no other extrema