Cross-Sperner families

Dániel Gerbnera Nathan Lemonsb Cory Palmera
Balázs Patkósa,\dagger Vajk Szécsib

aHungarian Academy of Sciences, Alfréd Rényi Institute of Mathematics, P.O.B. 127, Budapest H-1364, Hungary
bCentral European University, Department of Mathematics and its Applications, Nádor u. 9, Budapest H-1051, Hungary

June 14, 2010

Abstract

A pair of families (\mathcal{F}, \mathcal{G}) is said to be cross-Sperner if there exists no pair of sets $F \in \mathcal{F}, G \in \mathcal{G}$ with $F \subseteq G$ or $G \subseteq F$. There are two ways to measure the size of the pair (\mathcal{F}, \mathcal{G}): with the sum $|\mathcal{F}| + |\mathcal{G}|$ or with the product $|\mathcal{F}| \cdot |\mathcal{G}|$. We show that if $\mathcal{F}, \mathcal{G} \subseteq 2^{[n]}$, then $|\mathcal{F}| \cdot |\mathcal{G}| \leq 2^{2n-4}$ and $|\mathcal{F}| + |\mathcal{G}|$ is maximal if \mathcal{F} or \mathcal{G} consists of exactly one set of size $\lceil n/2 \rceil$ provided the size of the ground set n is large enough and both \mathcal{F} and \mathcal{G} are non-empty.

1 Introduction

We use standard notation: $[n]$ denotes the set of the first n positive integers, 2^S denotes the power set of the set S and $\binom{S}{k}$ denotes the set of all k-element subsets of S. The complement of a set F is denoted by \overline{F} and for a family \mathcal{F} we write $\overline{\mathcal{F}} = \{ \overline{F} : F \in \mathcal{F} \}$.

One of the first theorems in the area of extremal set families is that of Sperner [15], stating that if we consider a family $\mathcal{F} \subseteq 2^{[n]}$ such that no set $F \in \mathcal{F}$ can contain any other $F' \in \mathcal{F}$, then the number of sets in \mathcal{F} is at most $\binom{n}{\lfloor n/2 \rfloor}$ and equality holds if and only if $\mathcal{F} = \binom{[n]}{\lfloor n/2 \rfloor}$ or $\mathcal{F} = \binom{[n]}{\lceil n/2 \rceil}$. Families satisfying the assumption of Sperner’s theorem are called Sperner families or antichains. The celebrated theorem of Erdős,
Ko and Rado [6] asserts that if for a family $\mathcal{G} \subseteq \binom{[n]}{k}$ we have $G \cap G' \neq \emptyset$ for all $G, G' \in \mathcal{G}$ (families with this property are called intersecting), then the size of \mathcal{G} is at most $\binom{n-1}{k-1}$ provided $2k \leq n$.

There have been many generalizations and extensions both to the theorem of Sperner and to the result by Erdős, Ko and Rado (two excellent but not really recent surveys are [4] and [5]). One such generalization is the following: a pair $(\mathcal{F}, \mathcal{G})$ of families is said to be cross-intersecting if for any $F \in \mathcal{F}, G \in \mathcal{G}$ we have $F \cap G \neq \emptyset$. Cross-intersecting pairs of families have been investigated for quite a while and attracted the attention of many researchers [2, 3, 7, 8, 9, 10, 11, 12]. The present paper deals with the analogous generalization of Sperner families that has not been considered in the literature. A pair $(\mathcal{F}, \mathcal{G})$ of families is said to be cross-Sperner if there exists no pair of sets $F \in \mathcal{F}, G \in \mathcal{G}$ with $F \subseteq G$ or $G \subseteq F$. There are two ways to measure the size of the pair $(\mathcal{F}, \mathcal{G})$: either with the sum $|\mathcal{F}| + |\mathcal{G}|$ or with the product $|\mathcal{F}| \cdot |\mathcal{G}|$. We will address both problems.

Clearly, $|\mathcal{F}| + |\mathcal{G}| \leq 2^n$ as by definition $\mathcal{F} \cap \mathcal{G} = \emptyset$. The sum 2^n can be obtained by putting $\mathcal{F} = \emptyset, \mathcal{G} = 2^n$. Thus, when considering the problem of maximizing $|\mathcal{F}| + |\mathcal{G}|$ we will assume that both \mathcal{F} and \mathcal{G} are non-empty.

We can reformulate our problem in a rather interesting way. Let $\Gamma_n = (V_n, E_n)$ be the graph with vertex set $V_n = 2^n$ and edge set $E_n = \{(F,G) : F, G \in V_n, F \subseteq G \text{ or } G \subseteq F\}$. Then $\max\{|\mathcal{F}| + |\mathcal{G}|\} = 2^n - c(\Gamma_n)$, where $c(\Gamma_n)$ denotes the vertex connectivity of Γ_n. Moreover, if we let

$$F(n,m) = \max\{|\mathcal{G}| : \mathcal{G} \subseteq 2^n, \exists \mathcal{F} \subseteq 2^n \text{ with } |\mathcal{F}| = m, (\mathcal{F}, \mathcal{G}) \text{ is cross-Sperner}\}$$

then, denoting by $N_{\Gamma_n}(U)$ the neighborhood of U in Γ_n, we have

$$F(n,m) = 2^n - m - \min\{|N_{\Gamma_n}(\mathcal{F})| : \mathcal{F} \subseteq V_n, |\mathcal{F}| = m\}.$$

Thus determining $F(n,m)$ is equivalent to the isoperimetric problem for the graph Γ_n.

Let us mention that the cross-Sperner property of the pair $(\mathcal{F}, \mathcal{G})$ is equivalent to $(\mathcal{F}, \overline{\mathcal{G}})$ being cross-intersecting and cross-co-intersecting, i.e. for any $F \in \mathcal{F}$ and $G \in \mathcal{G}$ we have $F \cap \overline{G} \neq \emptyset$ and $F \cup \overline{G} \neq [n]$.

The rest of the paper is organized as follows. In Section 2, we consider the problem of maximizing $|\mathcal{F}| + |\mathcal{G}|$ and prove the following theorem.

Theorem 1.1. There exists an integer n_0 such that if $n \geq n_0$ and the pair $(\mathcal{F}, \mathcal{G})$ is cross-Sperner with $\emptyset \neq \mathcal{F}, \mathcal{G} \subseteq 2^n$, then

$$|\mathcal{F}| + |\mathcal{G}| \leq F(n,1) + 1 = 2^n - 2^{[n/2]} - 2^{[n/2]} + 2,$$

and equality holds if and only if \mathcal{F} or \mathcal{G} consists of exactly one set S of size $\lfloor n/2 \rfloor$ or $\lceil n/2 \rceil$ and the other family consists of all subsets of $[n]$ not contained in S and not containing S.
In Section 3, we address the problem of maximizing $|\mathcal{F}| \cdot |\mathcal{G}|$. Our result is the following theorem.

Theorem 1.2. If $n \geq 2$ and $(\mathcal{F}, \mathcal{G})$ is cross-Sperner with $\mathcal{F}, \mathcal{G} \subseteq 2^{[n]}$, then the following inequality holds:

$$|\mathcal{F}| |\mathcal{G}| \leq 2^{2^{n-4}}.$$

This bound is best possible as shown by $\mathcal{F} = \{F \in 2^{[n]} : \exists F \in \mathcal{F}, n \notin F\}$, $\mathcal{G} = \{G \in 2^{[n]} : n \in G, 1 \notin G\}$.

Finally, Section 4 contains some concluding remarks and open problems.

2 Proof of Theorem 1.1

Before we start the proof of Theorem 1.1, let us introduce some notation and state a theorem that we will use in our proof. For a k-uniform family $\mathcal{F} \subseteq \binom{[n]}{k}$ let $\Delta \mathcal{F} = \{G \in \binom{[n]}{k-1} : \exists F \in \mathcal{F}, G \subset F\}$ be the shadow of \mathcal{F}. The following version of the shadow theorem is due to Lovász [13].

Theorem 2.1. [Lovász [13]] Let $\mathcal{F} \subseteq \binom{[n]}{k}$ and let us define the real number x by $|\mathcal{F}| = \left(\frac{x}{k}\right)^k$. Then we have $\Delta \mathcal{F} \geq \left(\frac{x}{k-1}\right)^{k-1}$.

For any $F \in 2^{[n]}$ we have $N_{\Gamma_n}(F) = 2^{|F|} + 2^{n-|F|} - 2$ which is minimized if $|F| = \lceil n/2 \rceil$. This proves $F(n, 1) = 2^n - 2^{\lceil n/2 \rceil} + 1$ as stated in Theorem 1.1.

Proposition 2.2. If a pair $(\mathcal{F}, \mathcal{G})$ maximizes $|\mathcal{F}| + |\mathcal{G}|$, then both \mathcal{F} and \mathcal{G} are convex families i.e. $F_1 \subset F \subset F_2$, $F_1, F_2 \in \mathcal{F}$ implies $F \in \mathcal{F}$.

Proof. If F, F_1, F_2 are as above, then F can be added to \mathcal{F} since any set containing F contains F_1 and any subset of F is a subset of F_2. \qed

Let $(\mathcal{F}, \mathcal{G})$ be a pair of cross-Sperner families and let F_0 and G_0 be sets of minimum size in \mathcal{F} and \mathcal{G}.

Proposition 2.3. If $|F_0| + |G_0| < \lceil n/2 \rceil - 1$, then $|\mathcal{F}| + |\mathcal{G}| < F(n, 1)$.

Proof. No set containing $F_0 \cup G_0$ can be a member of \mathcal{F} or \mathcal{G}. \qed

As $(\mathcal{F}, \mathcal{G})$ is cross-Sperner if and only if $(\overline{\mathcal{F}}, \overline{\mathcal{G}})$ is cross-Sperner, by taking complements (if necessary) and Proposition 2.3 we may and will assume that $m := |F_0| \geq \lceil n/4 \rceil$. Let us write $\mathcal{F}^* = \{F \in \mathcal{F} : F_0 \subset F\}$. Subsets of F_0 are not in \mathcal{F} by the minimality of F_0 and by the cross-Sperner property they cannot be in \mathcal{G} either, thus
to prove Theorem 1.1 we need to show that there exist more than $|\mathcal{F}^*|$ many sets that are not contained in $\mathcal{F} \cup \mathcal{G}$ and are not subsets of F_0. For any $F^* \in \mathcal{F}^*$ let us define

$$B(F^*) = \{F^* \setminus F_0' : F_0' \subseteq F_0, |F^* \setminus F_0'| < m\}.$$

Clearly, for any $F^*_1, F^*_2 \in \mathcal{F}^*$ we have $B(F^*_1) \cap B(F^*_2) = \emptyset$ as they already differ outside F_0. By definition, no set in $B := \bigcup_{F^* \in \mathcal{F}^*} B(F^*)$ is a subset of F_0 as all sets in B have size smaller than m and $B \cap \mathcal{F} = \emptyset$ by the cross-Sperner property. Thus to prove Theorem 1.1 it is enough to show that $|\mathcal{F}^*| < |B|$.

Note the following three things:

• $|B(F^*)| = \sum_{i=|F^* \setminus F_0|+1}^{m} \binom{m}{i}$,

• $\mathcal{F}^{**} = \{F^* \setminus F_0 : F^* \in \mathcal{F}^*\}$ is downward closed as \mathcal{F} and \mathcal{F}^* are convex,

• $|\mathcal{F}^{**}| = |\mathcal{F}^*|$.

Therefore the following lemma finishes the proof of Theorem 1.1 by choosing $A = \mathcal{F}^{**}$, $k = m$ and $n' = n - |F_0|$.

Lemma 2.4. Let $\emptyset \neq A \subseteq 2^{[n]}$ be a downward closed family and $k \geq n'/3$. Then if n' is large enough, the following holds

$$|A| < \sum_{A \in A} \sum_{i=|A|+1}^{k} \binom{k}{i}. \tag{1}$$

Proof. Let $a_i = |\{A \in A : |A| = i\}|$ and $w(j) = \sum_{i=j+1}^{k} \binom{k}{i}$. Then we can formulate (1) in the following way:

$$\sum_{j=0}^{n'} a_j < \sum_{j=0}^{n'} a_j w(j). \tag{2}$$

Let x be defined by $a_{k-1} = \binom{x}{k-1}$. By Theorem 2.1 if $j \leq k - 1$ then $a_j \geq \binom{x}{j}$. If we replace a_j by $\binom{x}{j}$ in (2), then the LHS decreases by $a_j - \binom{x}{j}$ and the RHS decreases by $(a_j - \binom{x}{j})w(j)$, which is larger. If $j \geq k - 1$, then $a_j \leq \binom{x}{j}$ again by Theorem 2.1. If we replace a_j by $\binom{x}{j}$ in (2), then the LHS increases while the RHS does not change (as for $j \geq k$ we have $w(j) = 0$). Hence it is enough to prove

$$\sum_{j=0}^{n'} \binom{x}{j} < \sum_{j=0}^{n'} \binom{x}{j} w(j). \tag{3}$$

4
First we prove (3) for \(x = n' \). In this case the LHS is \(2^{n'} \) while the RHS is monotone increasing in \(k \), thus it is enough to prove for \(k = \lceil n/3 \rceil \). We will estimate the RHS from below by considering only one term of the sum. Clearly, \((n')_j w(j) \geq (n')_{j+1} (n'/3)\). Let us write \(j = \alpha n' \) for some \(0 \leq \alpha \leq 1/3 \). Then by Stirling’s formula we obtain

\[
\binom{n'}{j} \left(\frac{n'}{n'} \right) = \binom{n'}{\alpha n'} \left(\frac{n' \alpha}{n' + 1} \right) = \Theta \left(\frac{1}{n' \left(\alpha^{2\alpha(1-\alpha)(1/3)} \right)^{1/3}} \right) ^{n'}.
\]

The value of the fraction in parenthesis is larger than 2 for, say, \(\alpha = 2/9 \), thus (3) holds if \(n' \) is large enough and \(x = n' \).

To prove (3) for arbitrary \(x \), let \(c = (\binom{x}{k-1})/(\binom{n'}{k-1}) \). If \(j > k - 1 \), then \(c > (\binom{x}{j})/(\binom{n'}{j}) \), while if \(j < k - 1 \), then \(c < (\binom{x}{j})/(\binom{n'}{j}) \). By the \(x = n' \) case we know

\[
\sum_{j=0}^{n'} c(\binom{n'}{j}) < \sum_{j=0}^{n'} c(\binom{n'}{j}) w(j).
\]

Let us replace \(c(\binom{n'}{j}) \) by \((\binom{x}{j}) \) in this inequality. If \(j > k - 1 \), then the LHS decreases and the RHS does not change. If \(j = k - 1 \) none of the sides change by definition of \(c \). If \(j < k - 1 \), both sides increase, and the RHS increases more as \(w(j) \geq 1 \) for all \(0 \leq j \leq k-1 \). Hence the inequality holds and gives back (3), which finishes the proof of the lemma.

We believe that Theorem 1.1 is valid for all \(n \), but unfortunately Lemma 2.4 fails for small values of \(n \).

3 Proof of Theorem 1.2

In this section we prove Theorem 1.2. Our main tool will be the following special case of the Four Functions Theorem of Ahlswede and Daykin [1]. To state their result for any pair \(\mathcal{A}, \mathcal{B} \) of families let us write \(\mathcal{A} \cap \mathcal{B} = \{ A \cap B : A \in \mathcal{A}, B \in \mathcal{B} \} \) and \(\mathcal{A} \cup \mathcal{B} = \{ A \cup B : A \in \mathcal{A}, B \in \mathcal{B} \} \).

Theorem 3.1. [Ahlswede-Daykin, [1]] For any pair \(\mathcal{A}, \mathcal{B} \) of families we have

\[
|\mathcal{A}| |\mathcal{B}| \leq |\mathcal{A} \cap \mathcal{B}| |\mathcal{A} \cup \mathcal{B}|.
\]

To prove Theorem 1.2 we will need the following lemma.

Lemma 3.2. If \((\mathcal{F}, \mathcal{G}) \) is a pair of cross-Sperner families, then the families \(\mathcal{F}, \mathcal{G} \), \(\mathcal{F} \cap \mathcal{G} \) and \(\mathcal{F} \cup \mathcal{G} \) are pairwise disjoint.
Proof. \(F \) and \(G \) are disjoint as some set \(F \in F \cap G \) is a subset of itself and thus contradicts the cross-Sperner property. \(F \) and \(G \) are both disjoint from \(F \land G \) and \(F \lor G \) as \(F \cap G \subseteq F, G \) and \(F, G \subseteq F \cup G \). Finally, \(F \land G \) and \(F \lor G \) are disjoint as \(F_1 \cap G_1 = F_2 \cup G_2 \) would imply \(F_1 \subseteq G_2 \).

Now we are able to prove Theorem 1.2.

Proof. Let \((F, G)\) be a cross-Sperner pair of families. Clearly, if \(|F| + |G| \leq 2^{n-1}\), then the statement of the theorem holds. But if \(|F| + |G| > 2^{n-1}\), then by Lemma 3.2 we have \(|F \land G| + |F \lor G| < 2^{n-1}\) and thus by Theorem 3.1 we obtain \(|F||G| \leq |F \land G||F \lor G| \leq 2^{2n-4}\).

Corollary 3.3. For \(n \geq 2\), we have \(F(n, 2^{n-2}) = 2^{n-2}\).

4 Concluding remarks and open problems

One might wonder whether it changes the situation if we allow sets to belong to both \(F \) and \(G \) and we modify the definition of cross-Sperner families so that only pairs \(F \in F, G \in G \) with \(F \not\subseteq G \) or \(G \not\subseteq F \) are forbidden. It is easy to see that the situation is the same when considering \(|F| + |G|\). To prove that \(|F| + |G| \leq 2^n\) let us write \(C = F \cap G \) and if it is not empty, then \(D(C) := \{ C \setminus C' : C, C' \in C \} \) is disjoint both from \(F \) and \(G \) and a result by Marica and Schönheim [14] tells us that \(|D(C)| \geq |C|\). Note that the proof of Theorem 1.1 works in this case as well giving the upper bound \(|F| + |G| \leq F(n, 1) + 2\).

Although \(F(n, m) \) is not known for most values, it is natural to generalize the problem to \(k \)-tuples of families: \(F_1, F_2, ..., F_k \) is said to be cross-Sperner if for any \(1 \leq i < j \leq k \) there is no pair \(F \in F_i \) and \(F' \in F_j \) with \(F \subseteq F' \) or \(F' \subseteq F \). One can consider the problems of maximizing \(\sum_{i=1}^{k} |F_i| \) and \(\prod_{i=1}^{k} |F_i| \). In the former case we need the extra assumption that all \(F_i \) are non-empty as otherwise the trivial upper bound \(2^n \) is tight.

When maximizing the sum, it is natural to conjecture that in the best possible construction all but one family consists of one single set. By the cross-Sperner property, these sets together must form a Sperner family, therefore it might turn out to be useful to introduce

\[F^*(n, m) = \max\{|G| : G \subseteq 2^{[n]}, \exists F \subseteq 2^{[n]} \text{ with } |F| = m, (F, G) \text{ is cross-Sperner, } F \text{ is Sperner} \}. \]
Problem 4.1. Under what conditions is it true that if F_1, F_2, \ldots, F_k form a k-tuple of non-empty cross-Sperner families, then
\[\sum_{i=1}^{k} |F_i| \leq k - 1 + F^*(n, k - 1)? \]

Concerning maximizing the product of the $|F_i|$, by Theorem 1.2 one obtains that
\[\prod_{i=1}^{k} |F_i| = \left(\prod_{1 \leq i < j \leq k} |F_i||F_j| \right)^{\frac{1}{k-1}} \leq 2^{kn-2k}. \]

We conjecture that the following construction is optimal: let $l = l(k)$ be the smallest positive integer so that $k \leq \left(\frac{l}{l/2} \right)$. Then there exists a Sperner family $S = \{S_1, \ldots, S_k\} \subset 2^{|l|}$ of size k. Put $F_i = \{F \subseteq [n] : F \cap [l] = S_i\}$. Clearly, the F_i form a k-tuple of cross-Sperner families and we have $\prod_{i=1}^{k} |F_i| = 2^{k(n-l)}$. Unfortunately, already for $l = 3$ there is a gap of a factor of 8 between the upper bound and the size of our construction.

Conjecture 4.2. If $F_1, F_2, \ldots, F_k \subseteq 2^{[n]}$ form a k-tuple of cross-Sperner families, then
\[\prod_{i=1}^{k} |F_i| \leq 2^{k(n-l)}, \]
where l is the least positive integer with $\left(\frac{l}{l/2} \right) \geq k$.

References

