Approximate marginalization of absorption and scattering in fluorescence diffuse optical tomography

Ville Kolehmainen

1Department of Applied Physics, University of Eastern Finland (UEF), Kuopio, Finland

MUQ, Missoula, MT, June 25 2015
Joint work with:

- Meghdoot Mozumder (UEF)
- Tanja Tarvainen (UEF)
- Simon Arridge (UCL, London)
- Jari Kaipio (University of Auckland, NZ)
Outline:

Part 1: Approximation Error Model

Part 2: Fluorescence Diffuse Optical Tomography

Part 3: Computational Examples
Part 1: Approximation Error Model (AEM)
Introduction

- Consider the inverse problem of estimating $x \in \mathbb{R}^n$ from noisy observation $y \in \mathbb{R}^m$, given the model

$$y = \bar{A}(x, z) + e$$

where
- $x \in \mathbb{R}^n$: primary unknown
- $z \in \mathbb{R}^d$: uninteresting, **auxiliary unknowns**.
- Complete Bayesian solution: Posterior density model

$$\pi(x, z|y)$$

In principle, one should either
- estimate all parameters (x, z) or
- marginalize $\pi(x|y) = \int \int \pi(x, z|y)dz$ (by MCMC)

However, this is often infeasible due to computational time limitations.
• Conventional approximation: treat z as fixed conditioning variables, and estimate x from

$$\pi(x|y, z = z_0)$$

→ large errors if realization z_0 is incorrect.

• Figure: 1D-marginal posterior $\pi(x_\ell|y)$:
 • exact marginal $\pi(x_\ell|y)$ (black line)
 • $\pi(x_\ell|y, z = z_0)$ with incorrect z_0 (blue)
 • true value of x_ℓ (vertical).
• Approximation error approach (Kaipio & Somersalo, 2007); Approximation for the marginalization

\[\pi(x|y) = \int \int \pi(x, z|y)dz \]

by the following steps:

- Modeling errors caused by inaccurately known \(z \) are modeled as an additive noise process \(\varepsilon(x, z) \) in the measurement model.
- Approximate marginalization over the noise process using a Gaussian approximation for \(\pi(x, \varepsilon) \).

• Remarks:
- Approximation of \(\pi(x, \varepsilon) \) obtained by Monte Carlo integration over samples from prior models of \((x, z) \). Can be done off-line.
- Allows simultaneous handling of model reduction related errors.
Conventional measurement error model (CEM)

- Consider the conventional measurement model
 \[y = \bar{A}(x) + e \]
 (1)

- Joint density
 \[\pi(y, x, e) = \pi(y\mid x, e)\pi(e\mid x)\pi(x) = \pi(y, e\mid x)\pi(x) \]

- In case of (1), we have
 \[\pi(y\mid x, e) = \delta(y - \bar{A}(x) - e) \]
 and
 \[\pi(y\mid x) = \int \pi(y, e\mid x) \, de = \int \delta(y - \bar{A}(x) - e)\pi(e\mid x) \, de = \pi_{e\mid x}(y - \bar{A}(x)\mid x) \]

- In the (usual) case of mutually independent \(x \) and \(e \), we have
 \[\pi_{e\mid x}(e\mid x) = \pi_e(e) \]
 and
 \[\pi(y\mid x) = \pi_e(y - \bar{A}(x)) \]
Furthermore, if \(\pi(e) = \mathcal{N}(e_*, \Gamma_e) \) and \(\pi(x) = \mathcal{N}(x_*, \Gamma_x) \), we have

\[
\pi(x \mid y) \propto \exp \left(-\frac{1}{2} \left(\|L_e(y - \bar{A}(x) - e_*)\|^2 + \|L_x(x - x_*)\|^2 \right) \right),
\]

where \(\Gamma_e = L_e^T L_e \) and \(\Gamma_x = L_x^T L_x \).

MAP estimate with the CEM:

\[
\min_x \left\{ \|L_e(y - \bar{A}(x) - e_*)\|^2 + \|L_x(x - x_*)\|^2 \right\}
\]
Approximation error model (AEM)

- Accurate measurement model

\[y = \bar{A}(x, z) + e \]

(2)

- Instead of using (2) and treating \((x, z)\) as unknowns, we want to fix \(z \leftarrow z_0\) and use a possibly drastically reduced model

\[x \mapsto A(x, z_0) \]

However, the use of the conventional model

\[y = A(x, z_0) + e \]

leads to errors in the estimates of \(x\) if i) \(z_0\) is incorrect or/and ii) model reduction errors are not negligible.
In the approximation error approach, we write the measurement model

\[y = \tilde{A}(x, z) + e \]
\[= A(x, z_0) + [\tilde{A}(x, z) - A(x, z_0)] + e \]
\[= A(x, z_0) + \varepsilon(x, z) + e \]

(3)

where \(\varepsilon(x, z) = \tilde{A}(x, z) - A(x, z_0) \) is the approximation error.

The objective is to formulate posterior model

\[\pi(x|y) \propto \pi(y|x)\pi(x) \]

using measurement model (3).

We consider \(e \) independent of \((x, z)\).
• Using Bayes formula repeatedly, we get

\[
\pi(y, x, z, e, \varepsilon) = \pi(y | x, z, e, \varepsilon)\pi(x, z, e, \varepsilon) \\
= \delta(y - A(x, z_0) - e - \varepsilon)\pi(e, \varepsilon | x, z)\pi(z | x)\pi(x) \\
= \pi(y, z, e, \varepsilon | x)\pi(x)
\]

• Hence

\[
\pi(y | x) = \int \int \int \int \pi(y, z, e, \varepsilon | x)de d\varepsilon dz \\
= \int \pi_e(y - A(x, z_0) - \varepsilon)\pi_{\varepsilon|x}(\varepsilon | x) d\varepsilon
\]

(note: convolution integral w.r.t. \(\varepsilon\))

• To get a computationally useful and efficient form, \(\pi_e\) and \(\pi_{\varepsilon|x}\) are approximated with Gaussian distributions.
Let the Gaussian approximation of $\pi(\varepsilon, x)$ be

$$\pi(\varepsilon, x) \propto \exp \left\{ -\frac{1}{2} \begin{pmatrix} \varepsilon - \varepsilon_* \\ x - x_* \end{pmatrix}^T \begin{pmatrix} \Gamma_{\varepsilon} & \Gamma_{\varepsilon x} \\ \Gamma_{x \varepsilon} & \Gamma_x \end{pmatrix}^{-1} \begin{pmatrix} \varepsilon - \varepsilon_* \\ x - x_* \end{pmatrix} \right\}$$

Hence $\pi(e) = \mathcal{N}(e_*, \Gamma_e)$, $\pi(\varepsilon | x) = \mathcal{N}(\varepsilon_* | x, \Gamma_{\varepsilon | x})$, where

$$\varepsilon_* | x = \varepsilon_* + \Gamma_{\varepsilon x} \Gamma_x^{-1} (x - x_*), \quad \Gamma_{\varepsilon | x} = \Gamma_{\varepsilon} - \Gamma_{\varepsilon x} \Gamma_x^{-1} \Gamma_{x \varepsilon}$$

Define $\nu | x = e + \varepsilon | x$, $\pi(\nu | x) = \mathcal{N}(\nu_* | x, \Gamma_{\nu | x})$, where

$$\nu_* | x = e_* + \varepsilon_* + \Gamma_{\varepsilon x} \Gamma_x^{-1} (x - x_*), \quad \Gamma_{\nu | x} = \Gamma_e + \Gamma_{\varepsilon} - \Gamma_{\varepsilon x} \Gamma_x^{-1} \Gamma_{x \varepsilon}$$

Approximate likelihood

$$\pi(y | x) = \mathcal{N}(y - A(x, z_0) - \nu_* | x, \Gamma_{\nu | x})$$
• Posterior model

\[\pi(x \mid y) \propto \pi(y \mid x)\pi(x) \propto \exp \left(-\frac{1}{2} V(x) \right) \]

where \(V(x) \)

\[V(x) = \| L_{\nu \mid x} (y - A(x, z_0) - \nu_{* \mid x}) \|^2 + \| L_x (x - x_{*}) \|^2 \]

with \(\Gamma^{-1}_{\nu \mid x} = L_{\nu \mid x}^T L_{\nu \mid x} \) and \(\Gamma^{-1}_x = L_x^T L_x \).

• MAP estimate with the AEM:

\[\min_{x} \{ \| L_{\nu \mid x} (y - A(x, z_0) - \nu_{* \mid x}) \|^2 + \| L_x (x - x_{*}) \|^2 \} \]
Part 2: Fluoresence Diffuse Optical Tomography (fDOT)
Goal: estimate $h(r)$ (concentration of fluorophore markers) by boundary measurements of fluorescence light.

Fluorescence is "excited" by illumination at location $s_j \subset \partial \Omega$, emission of the fluorescent light is measured at detector locations $d_k \subset \partial \Omega$.

Notice: optical properties $(\mu_a(r), \mu_s(r))$ are not known!
Mathematical model:

- Coupled diffusion model:
 \[
 (-\nabla \cdot \kappa(r)\nabla + \mu_a(r)) \Phi^e(r) = 0, \quad r \in \Omega, \quad (4)
 \]
 \[
 \Phi^e(r) + \frac{1}{2\zeta} \kappa(r) \alpha \frac{\partial \Phi^e(r)}{\partial \vartheta} = \begin{cases}
 \frac{q(r)}{\zeta} & r \in r_s \\
 0 & r \in \partial \Omega \setminus r_s
 \end{cases}, \quad (5)
 \]
 \[
 (-\nabla \cdot \kappa(r)\nabla + \mu_a(r)) \Phi^f(r) = h(r)\Phi^e(r), \quad r \in \Omega, \quad (6)
 \]
 \[
 \Phi^f(r) + \frac{1}{2\zeta} \kappa(r) \alpha \frac{\partial \Phi^f(r)}{\partial \vartheta} = 0, \quad r \in \partial \Omega, \quad (7)
 \]

- Forward mapping (Born normalized):
 \[
 A(\mu_a, \mu_s) h = \frac{\int_{\Omega} \Phi^e(r_s, r)\psi^e(r_d, r) h(r) dr}{\int_{\Omega} \Phi^e(r_s, r) dr}, \quad (8)
 \]

 Discretization by FEM.
Part 3: Computational Examples
Estimates

- **MAP-REF** using correct nominal values \((\mu_a, \mu_s)\)

\[
h_{ref} = \arg \min_{h} \{ \parallel y - A(\mu_a, \mu_s)h \parallel_{\Gamma_e}^2 + \parallel L_h(h - h_*) \parallel^2 \},
\]

- **MAP-CEM** estimate using incorrect \((\mu_{a,*}, \mu_{s,*})\):

\[
h_{cem} = \arg \min_{h} \{ \parallel y - A(\mu_{a,*}, \mu_{s,*})h \parallel_{\Gamma_e}^2 + \parallel L_h(h - h_*) \parallel^2 \},
\]

- **MAP-AEM** estimate using the same incorrect \((\mu_{a,*}, \mu_{s,*})\):

\[
h_{aem} = \arg \min_{h} \{ \parallel y - A(\mu_{a,*}, \mu_{s,*})h - \nu_*h \parallel_{\Gamma_{\nu|h}}^2 + \parallel L_h(h - h_*) \parallel^2 \},
\]
Computation of approximation error statistics

- Approximation error
 \[\varepsilon = [A(\mu_a, \mu_s) - A(\mu_{a,*}, \mu_{s,*})]h \]

- Draw sets of samples
 \{\mu_a^{(\ell)}\}, \{\mu_s^{(\ell)}\} and \{h^{(\ell)}\} from the prior models \(\pi(\mu_a), \pi(\mu_s)\) and \(\pi(h)\).

- Compute approximation error samples:
 \[\varepsilon^{(\ell)} = [A(\mu_a^{(\ell)}, \mu_s^{(\ell)}) - A(\mu_{a,*}, \mu_{s,*})]h^{(\ell)} \]

- Estimate \(\varepsilon_{\ast|h}\) and \(\Gamma_{\varepsilon|h}\) as sample averages of \{\(h^{(\ell)}, \varepsilon^{(\ell)}\}\).
2D Results

- **Left:** \((\mu_a, \mu_s)\) (columns 1 & 2), \((\mu_{a,*}, \mu_{s,*})\) (columns 3 & 4).
- **Right:** 1) \(h_{\text{true}}\), 2) REF, 3) CEM, 4) AEM
3D example (digimouse)